Wednesday, November 28, 2012

Transistor

Transistor

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.


Transistor through-hole (dibandingkan dengan pita ukur sentimeter)
Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.

Cara kerja semikonduktor

Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat diubah menjadi isolator, sedangkan metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.

Cara kerja transistor

Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
  • Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
  • Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
  • Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
  • Polaritas: NPN atau N-channel, PNP atau P-channel
  • Maximum kapasitas daya: Low Power, Medium Power, High Power
  • Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
  • Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain
BJT
BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.
FET
FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.

Transistor pertemuan dwikutub

Transistor pertemuan dwikutub (BJT) adalah salah satu jenis dari transistor. Ini adalah peranti tiga-saluran yang terbuat dari bahan semikonduktor terkotori. Dinamai dwikutub karena operasinya menyertakan baik elektron maupun lubang elektron, berlawanan dengan transistor ekakutub seperti FET yang hanya menggunakan salah satu pembawa. Walaupun sebagian kecil dari arus transistor adalah pembawa mayoritas, hampir semua arus transistor adalah dikarenakan pembawa minoritas, sehingga BJT diklasifikasikan sebagai peranti pembawa-minoritas.
image

Perkenalan

Transistor NPN dapat dianggap sebagai dua dioda adu punggung tunggal anoda. Pada penggunaan biasa, pertemuan p-n emitor-basis dipanjar maju dan pertemuan basis-kolektor dipanjar mundur. Dalam transistor NPN, sebagai contoh, jika tegangan positif dikenakan pada pertemuan basis-emitor, keseimbangan di antara pembawa terbangkitkan kalor dan medan listrik menolak pada daerah pemiskinan menjadi tidak seimbang, memungkinkan elektron terusik kalor untuk masuk ke daerah basis. Elektron tersebut mengembara (atau menyebar) melalui basis dari daerah konsentrasi tinggi dekat emitor menuju konsentrasi rendah dekat kolektor. Elektron pada basis dinamakan pembawa minoritas karena basis dikotori menjadi tipe-p yang menjadikan lubang sebagai pembawa mayoritas pada basis. Daerah basis pada transistor harus dibuat tipis, sehingga pembawa tersebut dapat menyebar melewatinya dengan lebih cepat daripada umur pembawa minoritas semikonduktor untuk mengurangi bagian pembawa yang bergabung kembali sebelum mencapai pertemuan kolektor-basis. Untuk memastikannya, ketebalan basis dibuat jauh lebih rendah dari panjang penyebaran dari elektron. Pertemuan kolektor-basis dipanjar terbalik, jadi sedikit sekali injeksi elektron yang terjadi dari kolektor ke basis, tetapi elektron yang menyebar melalui basis menuju kolektor disapu menuju kolektor oleh medan pada pertemuan kolektor-basis.
image
NPN BJT dengan pertemuan E–B dipanjar maju dan pertemuan B–C dipanjar mundur
Pengendalian tegangan, arus dan muatan
Arus kolektor-emitor dapat dipandang sebagai terkendali arus basis-emitor (kendali arus) atau tegangan basis-emitor (kendali tegangan). Pandangan tersebut berhubungan dengan hubungan arus-tegangan dari pertemuan basis-emitor, yang mana hanya merupakan kurva arus-tegangan eksponensial biasa dari dioda pertemuan p-n.[1] Penjelasan fisika untuk arus kolektor adalah jumlah muatan pembawa minoritas pada daerah basis.[1][2][3] Model mendetail dari kerja transistor, model Gummel–Poon, menghitung distribusi dari muatan tersebut secara eksplisit untuk menjelaskan perilaku transistor dengan lebih tepat.[4] Pandangan mengenai kendali-muatan dengan mudah menangani transistor-foto, dimana pembawa minoritas di daerah basis dibangkitkan oleh penyerapan foton, dan menangani pematian dinamik atau waktu pulih, yang mana bergantung pada penggabungan kembali muatan di daerah basis. Walaupun begitu, karena muatan basis bukanlah isyarat yang dapat diukur pada saluran, pandangan kendali arus dan tegangan biasanya digunakan pada desain dan analisis sirkuit. Pada desain sirkuit analog, pandangan kendali arus sering digunakan karena ini hampir linier. Arus kolektor kira-kira βF kali lipat dari arus basis. Beberapa sirkuit dasar dapat didesain dengan mengasumsikan bahwa tegangan emitor-basis kira-kira tetap, dan arus kolektor adalah beta kali lipat dari arus basis. Walaupun begitu, untuk mendesain sirkuit BJT dengan akurat dan dapat diandalkan, diperlukan model kendali-tegangan (sebagai contoh model Ebers–Moll)[1]. Model kendali-tegangan membutuhkan fungsi eksponensial yang harus diperhitungkan, tetapi jika ini dilinierkan, transistor dapat dimodelkan sebagai sebuah transkonduktansi, seperti pada model Ebers–Moll, desain untuk sirkuit seperti penguat diferensial menjadi masalah linier, jadi pandangan kontrol-tegangan sering diutamakan. Untuk sirkuit translinier, dimana kurva eksponensiak I-V adalah kunci dari operasi, transistor biasanya dimodelkan sebagai terkendali tegangan dengan transkonduktansi sebanding dengan arus kolektor.
Tundaan penghidupan, pematian dan penyimpanan
Transistor dwikutub mengalami beberapa karakteristik tundaan ketika dihidupkan dan dimatikan. Hampir semua transistor, terutama transistor daya, mengalami waktu simpan basis yang panjang sehingga membatasi frekuensi operasi dan kecepatan pensakelaran. Salah satu cara untuk mengurangi waktu penyimpanan ini adalah dengan menggunakan penggenggam Baker.
Parameter alfa (α) dan beta (β) transistor
Perbandingan elektron yang mampu melintasi basis dan mencapai kolektor adalah ukuran dari efisiensi transistor. Pengotoran cerat pada daerah emitor dan pengotoran ringan pada daerah basis menyebabkan lebih banyak elektron yang diinjeksikan dari emitor ke basis daripada lubang yang diinjeksikan dari basis ke emitor. Penguatan arus moda tunggal emitor diwakili oleh βF atau hfe, ini kira-kira sama dengan perbandingan arus DC kolektor dengan arus DC basis dalam daerah aktif-maju. Ini biasanya lebih besar dari 100 untuk transistor isyarat kecil, tapi bisa sangat rendah, terutama pada transistor yang didesain untuk penggunaan daya tinggi. Parameter penting lainnya adalah penguatan arus tunggal-basis, αF. Penguatan arus tunggal-basis kira-kira adalah penguatan arus dari emitor ke kolektor dalam daerah aktif-maju. Perbandingan ini biasanya mendekati satu, di antara 0,9 dan 0,998. Alfa dan beta lebih tepatnya berhubungan dengan rumus berikut (transistor NPN):
image

Struktur

BJT terdiri dari tiga daerah semikonduktor yang berbeda pengotorannya, yaitu daerah emitor, daerah basis dan daerah kolektor. Daerah-daerah tersebut adalah tipe-p, tipe-n dan tipe-p pada transistor PNP, dan tipe-n, tipe-p dan tipe-n pada transistor NPN. Setiap daerah semikonduktor disambungkan ke saluran yang juga dinamai emitor (E), basis (B) dan kolektor (C). Basis secara fisik terletak di antara emitor dan kolektor, dan dibuat dari bahan semikonduktor terkotori ringan resistivitas tinggi. Kolektor mengelilingi daerah emitor, membuat hampir tidak mungkin untuk mengumpulkan elektron yang diinjeksikan ke daerah basis untuk melarikan diri, membuat harga α sangat dekat ke satu, dan juga memberikan β yang lebih besar. Irisan dari BJT menunjukkan bahwa pertemuan kolektor-basis jauh lebih besar dari pertemuan kolektor-basis. Transistor pertemuan dwikutub tidak seperti transistor lainnya karena biasanya bukan merupakan peranti simetris. Ini berarti dengan mempertukarkan kolektor dan emitor membuat transistor meninggalkan moda aktif-maju dan mulai beroperasi pada moda terbalik. Karena struktur internal transistor dioptimalkan untuk operasi moda aktif-maju, mempertukarkan kolektor dan emitor membuat harga α dan β pada operasi mundur jauh lebih kecil dari harga operasi maju, seringkali α bahkan kurang dari 0.5. Buruknya simetrisitas terutama dikarenakan perbandingan pengotoran pada emitor dan kolektor. Emitor dikotori berat, sedangkan kolektor dikotori ringan, memungkinkan tegangan panjar terbalik yang besar sebelum pertemuan kolektor-basis bobol. Pertemuan kolektor-basis dipanjar terbalik pada operasi normal. Alasan emitor dikotori berat adalah untuk memperbesar efisiensi injeksi, yaitu perbandingan antara pembawa yang diinjeksikan oleh emitor dengan yang diinjeksikan oleh basis. Untuk penguatan arus yang tinggi, hampir semua pembawa yang diinjeksikan ke pertemuan emitor-basis harus datang dari emitor. Perubahan kecil pada tegangan yang dikenakan membentangi saluran basis-emitor menyebabkan arus yang mengalir di antara emitor dan kolektor untuk berubah dengan signifikan. Efek ini dapat digunakan untuk menguatkan tegangan atau arus masukan. BJT dapat dianggap sebagai sumber arus terkendali tegangan, lebih sederhana dianggap sebagai sumber arus terkendali arus, atau penguat arus, dikarenakan rendahnya impedansi pada basis. Transistor-transistor awal dibuat dari germanium tetapi hampir semua BJT modern dibuat dari silikon. Beberapa transistor juga dibuat dari galium arsenid, terutama untuk penggunaan kecepatan tinggi.
image
image
Kepingan transistor NPN frekuensi tinggi KSY34, basis dan emitor disambungkan melalui ikatan kawat
NPN


Simbol NPN BJT.


Struktur dasar transistor NPN
NPN adalah satu dari dua tipe BJT, dimana huruf N dan P menunjukkan pembawa muatan mayoritas pada daerah yang berbeda dalam transistor. Hampir semua BJT yang digunakan saat ini adalah NPN karena pergerakan elektron dalam semikonduktor jauh lebih tinggi daripada pergerakan lubang, memungkinkan operasi arus besar dan kecepatan tinggi. Transistor NPN terdiri dari selapis semikonduktor tipe-p di antara dua lapisan tipe-n. Arus kecil yang memasuki basis pada tunggal emitor dikuatkan di keluaran kolektor. Dengan kata lain, transistor NPN hidup ketika tegangan basis lebih tinggi daripada emitor. Tanda panah dalam simbol diletakkan pada kaki emitor dan menunjuk keluar (arah aliran arus konvensional ketika peranti dipanjar maju).
PNP
Jenis lain dari BJT adalah PNP.
Simbol PNP BJT.
Struktur dasar transistor PNP
Transistor PNP terdiri dari selapis semikonduktor tipe-n di antara dua lapis semikonduktor tipe-p. Arus kecil yang meninggalkan basis pada moda tunggal emitor dikuatkan pada keluaran kolektor. Dengan kata lain, transistor PNP hidup ketika basis lebih rendah daripada emitor. Tanda panah pada simbol diletakkan pada emitor dan menunjuk kedalam.
[sunting] Transistor dwikutub pertemuan-taksejenis
Jalur dalam transistor dwikutub pertemuan-taksejenis. Penghalang menunjukkan elektron untuk bergerak dari emitor ke basis, dan lubang untuk diinjeksikan kembali dari basis ke emitor.
Transistor dwikutub pertemuan-taksejenis (HBT) adalah sebuah penyempurnaan BJT sehingga dapat menangani isyarat frekuensi sangat tinggi hingga beberapa ratus GHz. Sekarang sering digunakan dalam sirkuit ultracepat, terutama sistem RF.[5][6] Transistor pertemuan-taksejenis mempunyai semikonduktor yang berbeda untuk tiap unsur dalam transistor. Biasanya emitor dibuat dari bahan yang memiliki celah-jalur lebih besar dari basis. Ilustrasi menunjukkan perbedaan celah-jalur memungkinkan penghalang lubang untuk menginjeksikan lubang kembali ke basis (diperlihatkan sebagai Δφp), dan penghalang elektron untuk menginjeksikan ke basis (Δφn). Susunan penghalang ini membantu mengurangi injeksi pembawa minoritas dari basis ketika pertemuan emitor-basis dipanjar terbalik, dan dengan demikian mengupansi arus basis dan menaikkan efisiensi injeksi emitor. Injeksi pembawa menuju ke basis yang telah diperbaiki memungkinkan basis untuk dikotori lebih berat, menghasilkan resistansi yang lebih rendah untuk mengakses elektroda basis. Dalam BJT tradisional, atau BJT pertemuan-sejenis, efisiensi injeksi pembawa dari emitor ke basis terutama dipengaruhi oleh perbandingan pengotoran di antaran emitor dan basis, yang berarti basis harus dikotori ringan untuk mendapatkan efisiensi injeksi yang tinggi, membuat resistansioya relatif tinggi. Sebagai tambahan, pengotoran basis yang lebih tinggi juga memperbaiki karakteristik seperti tegangan mula dengan membuat basis lebih sempit. Pembedaan tingkat komposisi dalam basis, misalnya dengan menaikkan jumlah germanium secara progresif pada transistor SiGe, menyebabkan gradien dalam celah-jalur di basis netral (ditunjukkan sebagai ΔφG), memberikan medan terpatri di dalam yang membantu pengangkutan elektron melewati basis. Komponen alir tersebut membantu pengangkutan sebaran normal, menaikkan respons frekuensi transistor dengan memperpendek waktu pemindahan melewati basis. Dua HBT yang paling sering digunakan adalah silikon-germanium dan aluminium arsenid, tetapi jenis semikonduktor lain juga bisa digunakan untuk struktur HBT. Struktur HBT biasanya dibuat dengan teknik epitaksi, seperti epitaksi fasa uap logam-organik dan epitaksi sinar molekuler.

Daerah operasi

Batas operasi aman transistor, biru: batas IC maksimum, merah: batas VCE maksimum, ungu: batas daya maksimum
Transistor dwikutub mempunyai lima daerah operasi yang berbeda, terutama dibedakan oleh panjar yang diberikan:
  • Aktif-maju (atau aktif saja): pertemuan emitor-basis dipanja maju dan pertemuan basis-kolektor dipanjar mundur. Hampir semua transistor didesain untuk mencapai penguatan arus tunggal emitor yang terbesar (βF) dalam moda aktif-maju. in forward-active mode. Dalam keadaan ini arus kolektor-emitor beberapa kali lipat lebih besar dari arus basis.
  • Aktif-mundur (atau aktif-terbalik atau terbalik): dengan membalik pemanjaran pada moda aktif-maju, transistor dwikutub memasuki moda aktif-mundur. Pada moda ini, daerah emitor dan kolektor bertukar fungsi. Karena hampir semua BJT didesain untuk penguatan arus moda aktif-maju yang maksimal, βF pada moda terbalik beberapa kaki lipat lebih rendah. Moda transistor ini jarang digunakan, dan hanya diperhitungkan untuk kondisi kegagalan dan untuk beberapa jenis logika dwikutub. Tegangan tembus panjar terbalik pada basis mungkin lebih rendah pada moda ini.
  • Jenuh: dengan semua pertemuan dipanjar maju, BJT memasuki moda jenuh dan memberikan konduksi arus yang besar dari emitor km kolektor. Moda ini berkorespondensi dengan logika hidup, atau sakelar yang tertutup.
  • Putus: pada keadaan putus, pemanjaran bertolak belakang dengan keadaan jenuh (semua pertemuan dipanjar terbalik). Arus yang mengalir sangat kecil, dengan demikian berkorespondensi dengan logika mati, atau sakelar yang terbuka.
Walaupun daerah-daerah tersebut didefinisikan dengan baik untuk tegangan yang cukup besar, mereka bertumpang tindih jika tegangan panjar yang dikenakan terlalu kecil (kurang dari beberapa ratus milivolt).
Transistor dalam moda aktif-maju
Transistor BJT NPN dalam moda aktif-maju
Diagram disamping menunjukkan transistor NPN disambungkan ke dua sumber tegangan. Untuk membuat transistor menghantar arus yang kentara dari C ke E, VBE harus diatas harga minimum yang sering disebut sebagai tegangan potong. Tegangan potong biasanya kira-kira 600 mV untuk BJT silikon pada suhu ruang, tetapi ini juga bisa berbeda-beda bergantung pada tipe transistor dan teknik pemanjaran. Tegangan yang dikenakan ini membuat pertemuan P-N bagian bawah berubah menjadi hidup dan memungkinkan aliran elektron dari emitor ke basis. Pada moda aktif, medan listrik yang terdapat di antara basis dan kolektor (disebabkan oleh VCE) akan menyebabkan mayoritas elektron untuk melintasi pertemuan P-N bagian atas menuju ke kolektor untuk membentuk arus kolektor IC. Elektron yang tertinggal bergabung kembali dengan lubang yang merupakan pembawa mayoritas pada basis sehingga menimbulkan arus melalui sambungan basis untuk membentuk arus basis, IB. Seperti yang diperlihatkan pada diagram, arus emitor IE, adalah arus transistor total, yang merupakan penjumlahan arus saluran lainnya (IE = IB + IC). Pada diagram, tanda panah menunjukkan arah dari arus konvensional, aliran elektron mengalir berlawanan dengan tanda panah. Pada moda aktif, perbandingan dari arus kolektor-ke-basis dengan arus basis disebut dengan penguatan arus DC. Pada perhitungan, harga dari penguatan arus DC disebut dengan hFE, dan harga penguatan arus AC disebut dengan hfe. Walaupun begitu, ketika cakupan frekuensi tidak diperhitungkan, simbol β sering digunakan. Perlu diperhatikan bahwa arus emitor berhubungan dengan VBE secara eksponensial. Pada suhu ruang, peningkatan VBE sebesar kurang-lebih 60 mV meningkatkan arus emitor dengan faktor 10 kali lipat. Kerena arus basis kurang lebih sebanding dengan arus kolektor dan emitor, ini juga berubah dengan fungsi yang sama. Untuk transistor PNP, secara umum cara kerjanya adalah sama, kecuali polaritas tegangan panjar yang dibalik dan fakta bahwa pembawa muatan mayoritas adalah lubang elektron.
Transistor PNP dalam moda aktif-maju
Transistor PNP moda aktif

Sejarah

Transistor pertama
Transistor dwikutub titik-sentuh diciptakan pada Desember 1947[7] di Bell Telephone Laboratories oleh John Bardeen dan Walter Brattain dibawah arahan William Shockley. Versi pertemuan diciptakan pada tahun 1948[8]. Setelah menjadi peranti pilihan untuk berbagai rangkaian, sekarang penggunaannya telah banyak digantikan oleh FET, baik pada sirkuit digital (oleh CMOS) ataupun sirkuit analog (oleh MOSFET dan JFET).
[sunting] Transistor germanium
Transistor germanium sering digunakan pada tahun 1950-an dan 1960-an. Karena transistor jenis ini mempunyai tegangan potong yang rendah, membuatnya cocok untuk beberapa penggunaan isyarat tegangan rendah. Transistor ini memiliki kemungkinan lebih besar untuk mengalami thermal runaway.
Teknik produksi
Berbagai motoda untuk memproduksi transistor pertemuan dwikutub telah dikembangkan[9].

Penggunaan

BJT tetap menjadi peranti pilihan untuk beberapa penggunaan, seperti sirkuit diskrit, karena tersedia banyak jenis BJT, transkonduktansinya yang tinggi serta resistansi kekuasannya yang tinggi dibandingkan dengan MOSFET. BJT juga dipilih untuk sirkuit analog khusus, terutama penggunaan frekuensi sangat tinggi (VHF), seperti sirkuit frekuensi radio untuk sistem nirkabel. Transistor dwikutub dapat dikombinasikan dengan MOSFET dalam sebuah sirkuit terpadu dengan menggunakan proses BiCMOS untuk membuat sirkuit inovatif yang menggunakan kelebihan kedua tipe transistor.
Sensor suhu
Karena ketergantungan suhu dan arus pada tegangan panjar maju pertemuan basis-emitor yang dapat dihitung, sebuah BJT dapat digunakan untuk mengukur suhu dengan menghitung perbedaan dua tegangan pada dua arus panjar yang berbeda dengan perbandingan yang diketahui.[23].
Pengubah logaritmik
Karena tegangan basis-emitor berubah sebagai fungsi logaritmik dari arus basis-emitor dan kolektor-emitor, sebuah BJT dapat juga digunakan untuk menghitung logaritma dan anti-logaritma. Sebuah dioda sebenarnya juga dapat melakukan fungsi ini, tetapi transistor memberikan fleksibilitas yang lebih besar.

Kerawanan

Pemaparan transistor ke radiasi menyebalan kerusakan radiasi. Radiasi menyebabkan penimbunan molekul cacat di daerah basis yang berlaku sebagai pusat penggabungan kembali. Hasil dari pengurangan umur pembawa minoritas menyebabkan transistor kehilangan penguatan.
BJT daya beresiko mengalami moda kegagalan yang dinamakan dobrakan sekunder. Pada moda kegagalan ini, beberapa titik pada kepingan semikonduktor menjadi panas dikarenakan arus yang mengalirinya. Bahang yang ditimbulkan menyebabkan pembawa lebih mudah bergerak. Sebagai hasilnya, bagian terpanas dari kepingan semikonduktor menghantarkan lebih banyak lagi arus. Proses regeneratif ini akan terus berlanjut hingga transistor mengalami kegagalan total atau pencatu daya mengalami kegagalan.

Transistor pertemuan tunggal

Transistor pertemuan tunggal (UJT) adalah sebuah peranti semikonduktor elektronik yang hanya mempunyai satu pertemuan.

Konstruksi

image
image
UJT mempunyai tiga saluran, sebuah emitor (E) dan dua basis (B1 dan B2). Basis dibentuk oleh batang silikon tipe-n yang terkotori ringan. Dua sambungan ohmik B1 dan B2 ditambahkan pada kedua ujung batang silikon. Resistansi di antara B1 dan B2 ketika emitor dalam keadaan rangkaian terbuka dinamakan resistensi antarbasis (interbase resistance).

Tipe

Ada dua tipe dari transistor pertemuan tunggal, yaitu:
  • Transistor pertemuan tunggal dasar, atau UJT, adalah sebuah peranti sederhana yang pada dasarnya adalah sebuah batangan semikonduktor tipe-n yang ditambahkan difusi bahan tipe-p di suatu tempat sepanjang batangan, menentukan parameter η dari peranti. Peranti 2N2646 adalah versi yang paling sering digunakan.
  • Transistor pertemuan tunggal dapat diprogram, atau PUT, sebenarnya adalah saudara dekat tiristor. Seperti tiristor, ini terbentuk dari empat lapisan P-N dan mempunyai sebuah anoda dan sebuah katoda yang tersambung ke lapisan pertama dan lapisan terakhir, dan sebuah gerbang yang disambungkan ke salah satu lapisan tengah. Penggunaan PUT tidak dapat secara langsung dipertukarkan dengan penggunaan UJT, tetapi menunjukkan fungsi yang mirip. Pada konfigurasi sirkuit konvensional, digunakan dua resistor pemrogram untuk mengeset parameter η dari PUT, pada konfigurasi ini, UJT berlaku seperti UJT konvensional. Peranti 2N6027 adalah contoh dari peranti ini.

Cara kerja

UJT dipanjar dengan tegangan positif di antara kedua basis. Ini menyebabkan penurunan tegangan disepanjang peranti. Ketika tegangan emitor dinaikkan kira-kira 0,7V diatas tegangan difusi P (emitor), arus mulai mengalir dari emitor ke daerah basis. Karena daerah basis dikotori sangat ringan, arus tambahan (sebenarnya muatan pada daerah basis) menyebabkan modulasi konduktifitas yang mengurangi resistansi basis di antara pertemuan emitor dan saluran B2. Pengurangan resistansi berarti pertemuan emitor lebih dipanjar maju, dan bahkan ketika lebih banyak arus diinjeksikam. Secara keseluruhan, efeknya adalah resistansi negatif pada saluran emitor. Inilah alasan mengapa UJT sangat berguna, terutama untuk sirkuit osilator sederhana.

Kepopuleran

Sirkuit UJT pernah terkenal pada penggemar elektronika transistor sekitar tahun 1970-an dan awal 1980 karena UJT memungkinkan pembuatan osilator sederhana yang dibuat hanya dengan satu peranti aktif. Sekarang, karena IC menjadi lebih populer , osilator seperti IC pewaktu 555 lebih sering digunakan.

Penggunaan

Selain penggunaan pada osilator relaksasi, salah satu penggunaan UJT dan PUT yang paling penting adalah untuk menyulut tiristor (seperti SCR, TRIAC, dll). Faktanya, tegangan DC dapat digunakan untuk mengendalikan sirkuit UJT dan PUT karena waktu hidup peranti meningkat sesuai dengan peningkatan tegangan kendali DC. Penggunaan ini penting untuk pengendalia AC arus tinggi.

Transistor dwikutub gerbang-terisolasi

image
image
Transistor dwikutub gerbang-terisolasi (IGBT = insulated gate bipolar transistor) adalah piranti semikonduktor yang setara dengan gabungan sebuah BJT dan sebuah MOSFET. Jenis peranti baru yang berfungsi sebagai komponen saklar untuk aplikasi daya ini muncul sejak tahun 1980-an.
Karakteristik IGBT
Sesuai dengan namanya, peranti baru ini merupakan peranti yang menggabungkan struktur dan sifat-sifat dari kedua jenis transistor tersebut di atas, BJT dan MOSFET. Dengan kata lain, IGBT mempunyai sifat kerja yang menggabungkan keunggulan sifat-sifat kedua jenis transistor tersebut. Saluran gerbang dari IGBT, sebagai saluran kendali juga mempunyai struktur bahan penyekat (isolator) sebagaimana pada MOSFET.
Masukan dari IGBT adalah terminal Gerbang dari MOSFET, sedang terminal Sumber dari MOSFET terhubung ke terminal Basis dari BJT. Dengan demikian, arus cerat keluar dan dari MOSFET akan menjadi arus basis dari BJT. Karena besarnya resistansi masukan dari MOSFET, maka terminal masukan IGBT hanya akan menarik arus yang kecil dari sumber. Di pihak lain, arus cerat sebagai arus keluaran dari MOSFET akan cukup besar untuk membuat BJT mencapai keadaan jenuh. Dengan gabungan sifat kedua unsur tersebut, IGBT mempunyai perilaku yang cukup ideal sebagai sebuah saklar elektronik. Di satu pihak IGBT tidak terlalu membebani sumber, di pihak lain mampu menghasilkan arus yang besar bagi beban listrik yang dikendalikannya.
Terminal masukan IGBT mempunyai nilai impedansi yang sangat tinggi, sehingga tidak membebani rangkaian pengendalinya yang umumnya terdiri dari rangkaian logika. Ini akan menyederhanakan rancangan rangkaian pengendali dan penggerak dari IGBT.
Di samping itu, kecepatan pensaklaran IGBT juga lebih tinggi dibandingkan peranti BJT, meskipun lebih rendah dari peranti MOSFET yang setara. Di lain pihak, terminal keluaran IGBT mempunyai sifat yang menyerupai terminal keluaran (kolektor-emitor) BJT. Dengan kata lain, pada saat keadaan menghantar, nilai resistansi-hidup (Ron) dari IGBT sangat kecil, menyerupai Ron pada BJT.
Dengan demikian bila tegangan jatuh serta borosan dayanya pada saat keadaan menghantar juga kecil. Dengan sifat-sifat seperti ini, IGBT akan sesuai untuk dioperasikan pada arus yang besar, hingga ratusan Ampere, tanpa terjadi kerugian daya yang cukup berarti. IGBT sesuai untuk aplikasi pada perangkat Inverter maupun Kendali Motor Listrik (Drive).
Sifat-sifat IGBT
Komponen utama di dalam aplikasi elekronika daya dewasa ini adalah saklar peranti padat yang diwujudkan dengan peralatan semikonduktor seperti transistor dwikutub (BJT), transistor efek medan (FET), maupun Thyristor. Sebuah saklar ideal di dalam penggunaan elektronika daya akan mempunyai sifat-sifat sebagai berikut:
  1. pada saat keadaan tidak menghantar (off), saklar mempunyai tahanan yang besar sekali, mendekati nilai tak berhingga. Dengan kata lain, nilai arus bocor struktur saklar sangat kecil
  2. Sebaliknya, pada saat keadaan menghantar (on), saklar mempunyai tahanan menghantar (Ron) yang sekecil mungkin. Ini akan membuat nilai tegangan jatuh (voltage drop) keadaan menghantar juga sekecil mungkin, demikian pula dengan besarnya borosan daya yang terjadi, dan kecepatan pensaklaran yang tinggi.
  • Sifat nomor (1) umumnya dapat dipenuhi dengan baik oleh semua jenis peralatan semikonduktor yang disebutkan di atas, karena peralatan semikonduktor komersial pada umumnya mempunyai nilai arus bocor yang sangat kecil.
  • Untuk sifat nomor (2), BJT lebih unggul dari MOSFET, karena tegangan jatuh pada terminal kolektor-emitor, VCE pada keadaan menghantar (on) dapat dibuat sekecil mungkin dengan membuat transitor BJT berada dalam keadaan jenuh.
  • Sebaliknya, untuk unsur kinerja nomor (3) yaitu kecepatan pensakelaran, MOSFET lebih unggul dari BJT, karena sebagai peranti yang bekerja berdasarkan aliran pembawa muatan mayoritas, pada MOSFET tidak dijumpai arus penyimpanan pembawa muatan minoritas pada saat proses pensaklaran, yang cenderung memperlamnat proses pensaklaran tersebut.


No comments:

Post a Comment